高一數學三角函數教案
三角函數是高中數學教學內容的一個重要部分,此內容既有先前函數知識的延伸,又有三角知識的擴展,無論是教師的教,還是學生的學,都有難度。不同的數學教材對三角函數的概念有不同的描述和要求,有的使用終邊定義法,有的使用單位圓定義法,這種差異已經在教師中產生一些爭論,那么這種差異會對學生的學習產生什么影響呢,是我們需要研究的問題。以下是學習啦小編為大家精心準備的高一數學三角函數相關教案。內容僅供參考,歡迎閱讀!
高一數學《三角函數》教案如下:
已知三角函數值求角(反正弦,反余弦函數)
目的:要求學生初步(了解)理解反正弦、反余弦函數的意義,會由已知角的正弦值、余弦值求出 范圍內的角,并能用反正弦,反余弦的符號表示角或角的集合。
過程:
一、簡單理解反正弦,反余弦函數的意義。
由
1在R上無反函數。
2在 上, x與y是一一對應的,且區間 比較簡單
在 上, 的反函數稱作反正弦函數,
記作 ,(奇函數)。
同理,由
在 上, 的反函數稱作反余弦函數,
記作
二、已知三角函數求角
首先應弄清:已知角求三角函數值是單值的。
已知三角函數值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函數是單調遞增的,且符合條件的角只有一個
∴ (即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
這里用到 是奇函數。
例二、1、已知 ,求
解:在 上余弦函數 是單調遞減的,
且符合條件的角只有一個
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的值。
解:由上題: 。
介紹:∵
∴上題
例三、(見課本P74-P75)略。
三、小結:求角的多值性
法則:1、先決定角的象限。
2、如果函數值是正值,則先求出對應的銳角x;
如果函數值是負值,則先求出與其絕對值對應的銳角x,
3、由誘導公式,求出符合條件的其它象限的角。
四、作業:P76-77 練習 3
   習題4.11 1,2,3,4中有關部分。
高一數學《三角函數的周期性》教案如下:
一、學習目標與自我評估
1 掌握利用單位圓的幾何方法作函數 的圖象
2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期
3 會用代數方法求 等函數的周期
4 理解周期性的幾何意義
二、學習重點與難點
“周期函數的概念”, 周期的求解。
三、學法指導
1、 是周期函數是指對定義域中所有 都有
,即 應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
四、學習活動與意義建構
五、重點與難點探究
例1、若鐘擺的高度 與時間 之間的函數關系如圖所示
(1)求該函數的周期;
(2)求 時鐘擺的高度。
例2、求下列函數的周期。
(1) (2)
總結:(1)函數 (其中 均為常數,且
的周期T= 。
(2)函數 (其中 均為常數,且
的周期T= 。
例3、求證: 的周期為 。
例4、(1)研究 和 函數的圖象,分析其周期性。
(2)求證: 的周期為 (其中 均為常數,且
總結:函數 (其中 均為常數,且的周期T= 。
例5、(1)求 的周期。
(2)已知 滿足 ,求證: 是周期函數
課后思考:能否利用單位圓作函數 的圖象。
六、作業:
七、自主體驗與運用
1、函數 的周期為 ( )
A、 B、 C、 D、
2、函數 的最小正周期是 ( )
A、 B、 C、 D、
3、函數 的最小正周期是 ( )
A、 B、 C、 D、
4、函數 的周期是 ( )
A、 B、 C、 D、
5、設 是定義域為R,最小正周期為 的函數,若 ,則 的值等于 ( )
A、1 B、 C、0 D、
6、函數 的最小正周期是 ,則
7、已知函數 的最小正周期不大于2,則正整數的最小值是
8、求函數 的最小正周期為T,且 ,則正整數的最大值是
9、已知函數 是周期為6的奇函數,且 則
10、若函數 ,則
11、用周期的定義分析 的周期。
12、已知函數 ,如果使 的周期在 內,求正整數 的值
13、一機械振動中,某質子離開平衡位置的位移 與時間 之間的函數關系如圖所示:
(1) 求該函數的周期;
(2) 求 時,該質點離開平衡位置的位移。
14、已知 是定義在R上的函數,且對任意 有成立,
(1) 證明: 是周期函數;
(2) 若 求 的值。
