寒假初中數(shù)學(xué)學(xué)習(xí)計(jì)劃范文3篇
毫無計(jì)劃的學(xué)習(xí)是荒唐的,散漫疏懶,松松垮垮的,這是不可能有進(jìn)步的,以下是學(xué)習(xí)啦小編為大家精心準(zhǔn)備的:寒假初中數(shù)學(xué)學(xué)習(xí)計(jì)劃范文3篇,歡迎參考閱讀!
寒假初中數(shù)學(xué)學(xué)習(xí)計(jì)劃范文一
首先,先將寒假分為八個(gè)階段,然后按下面計(jì)劃進(jìn)行,完成高等數(shù)學(xué)(上)的復(fù)習(xí)內(nèi)容。
1 第一階段復(fù)習(xí)計(jì)劃:
復(fù)習(xí)高數(shù)書上冊第一章,需要達(dá)到以下目標(biāo):
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.
6.掌握極限的性質(zhì)及四則運(yùn)算法則.
7.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會(huì)用等價(jià)無窮小量求極限.
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型.
10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).
本階段主要任務(wù)是掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性;基本初等函數(shù)的性質(zhì)及其圖形;數(shù)列極限與函數(shù)極限的定義及其性質(zhì);無窮小量的比較;兩個(gè)重要極限;函數(shù)連續(xù)的概念、函數(shù)間斷點(diǎn)的類型;閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
2第二階段復(fù)習(xí)計(jì)劃:
復(fù)習(xí)高數(shù)書上冊第二章1-3節(jié),需達(dá)到以下目標(biāo):
1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分.
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù).
本周主要任務(wù)是掌握導(dǎo)數(shù)的幾何意義;函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系;平面曲線的切線和法線;牢記 基本初等函數(shù)的導(dǎo)數(shù)公式;會(huì)用遞推法計(jì)算高階導(dǎo)數(shù)。
3 第三階段復(fù)習(xí)計(jì)劃:
復(fù)習(xí)高數(shù)書上冊第二章 4-5節(jié),第三章1-5節(jié)。需達(dá)到以下目標(biāo):
1.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).
2.理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必達(dá)法則求未定式極限的方法.
4.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.
5.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性。(注:在區(qū)間[a,b]內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng) 時(shí),圖形是凹的;當(dāng) 時(shí),圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形.
本周主要任務(wù)是掌握分段函數(shù),反函數(shù),隱函數(shù),由參數(shù)方程確定函數(shù)的導(dǎo)數(shù)。會(huì)根據(jù)函數(shù)在一點(diǎn)的導(dǎo)數(shù)判斷函數(shù)的增減性。會(huì)應(yīng)用微分中值定理證明。會(huì)根據(jù)洛比達(dá)法則的幾種情況應(yīng)用法則求極限。掌握極值存在的必要條件,第一和第二充分條件。會(huì)計(jì)算函數(shù)的極值和最值以及函數(shù)的凸凹性。會(huì)計(jì)算函數(shù)的漸近線。會(huì)計(jì)算與導(dǎo)數(shù)有關(guān)的應(yīng)用題[邊際問題、彈性問題、經(jīng)濟(jì)問題和幾何問題的最值]。
4 第四階段復(fù)習(xí)計(jì)劃
復(fù)習(xí)高數(shù)書上冊第四章 第1-3節(jié)。需達(dá)到以下目標(biāo):
1.理解原函數(shù)的概念,理解不定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分的性質(zhì),掌握不定積分換元積分法與分部積分法.會(huì)求簡單函數(shù)的不定積分。
本周主要任務(wù)是掌握不定積分的性質(zhì),不定積分的公式[牢記一個(gè)函數(shù)的原函數(shù)有無窮多個(gè),注意+C],會(huì)運(yùn)用第一,第二換元法求函數(shù)的不定積分。掌握不定積分分部積分公式并應(yīng)用。
5 第五階段復(fù)習(xí)計(jì)劃
復(fù)習(xí)高數(shù)書上冊第五章第1-3節(jié)。達(dá)到以下目標(biāo):
1.理解定積分的幾何意義。
2.掌握定積分的性質(zhì)及定積分中值定理。
3.掌握定積分換元積分法與定積分廣義換元法.
本周的主要任務(wù)是掌握不定積分的性質(zhì),會(huì)根據(jù)不定積分的性質(zhì)做題。尤其注意積分上下限互換后積分值變?yōu)槠湎喾磾?shù),定積分與變量無關(guān),可根據(jù)函數(shù)奇偶性計(jì)算定積分等性質(zhì)。
6 第六階段復(fù)習(xí)計(jì)劃
復(fù)習(xí)高數(shù)書上冊第五章第4節(jié),第六章第2節(jié)。達(dá)到以下目標(biāo):
1.掌握積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.
2.掌握定積分換元法與定積分廣義換元法. 會(huì)求分段函數(shù)的定積分。
3.掌握用定積分計(jì)算一些幾何量 (如平面圖形的面積、旋轉(zhuǎn)體的體積)。了解廣義積分與無窮限積分。
本周主要任務(wù)是掌握積分上限函數(shù)的性質(zhì),掌握牛頓-萊布尼茨公式,應(yīng)用定積分換元法求定積分。會(huì)根據(jù)定積分的幾何意義計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積。
寒假初中數(shù)學(xué)學(xué)習(xí)計(jì)劃范文二
初一學(xué)生往往不善于課前預(yù)習(xí),也不知道預(yù)習(xí)起什么作用,預(yù)習(xí)僅是流于形式,草草看一遍,看不出什么問題和疑點(diǎn)。那到底該如何預(yù)習(xí)呢?預(yù)習(xí)的步驟有哪些呢?
一粗讀,先粗略課文瀏覽教材的有關(guān)內(nèi)容,大致了解相關(guān)內(nèi)容,掌握本書知識(shí)的基本框架,同時(shí)了解新課的重點(diǎn)和難點(diǎn)。
二細(xì)讀,對重要概念、公式、法則、定理反復(fù)閱讀、仔細(xì)體會(huì)、認(rèn)真思考,注意知識(shí)的發(fā)展形成過程,對難以理解的概念作出標(biāo)記,以便新學(xué)期上課時(shí)帶著問題聽課效率更高。通過課前預(yù)習(xí)能夠使學(xué)生知道那些地方容易,哪些地方難,會(huì)使今后的聽課變得更有針對性,注意力更集中,從而提高了聽課的效率。大量的事實(shí)證明,養(yǎng)成良好的預(yù)習(xí)習(xí)慣,能使孩子從被動(dòng)學(xué)習(xí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),同時(shí)能逐步培養(yǎng)孩子的自學(xué)能力。有了自學(xué)能力,就好比掌握了打開知識(shí)寶庫的鑰匙,就能源源不斷的獲取新知識(shí),汲取新的營養(yǎng)。
細(xì)心地挖掘概念和公式
很多同學(xué)對概念和公式不夠重視,這類問題反映在三個(gè)方面:
一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在單項(xiàng)式的概念(數(shù)字和字母積的代數(shù)式是單項(xiàng)式)中,很多同學(xué)忽略了“單個(gè)字母或數(shù)字也是單項(xiàng)式”。
二是,對概念和公式一味的死記硬背,缺乏與實(shí)際題目的聯(lián)系。這樣就不能很好的將學(xué)到的知識(shí)點(diǎn)與解題聯(lián)系起來。
三是,一部分同學(xué)不重視對數(shù)學(xué)公式的記憶。記憶是理解的基礎(chǔ)。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應(yīng)用呢?
要做到:
一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;
二列:列出相關(guān)的知識(shí)點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識(shí)點(diǎn)之間的網(wǎng)絡(luò)關(guān)系,這相當(dāng)于寫出總結(jié)要點(diǎn);
三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
四歸:歸納出體現(xiàn)所學(xué)知識(shí)的各種題型及解題方法。
五編:根據(jù)所總結(jié)的內(nèi)容編一些順口溜;如:總結(jié)不等式組解集時(shí),“大大取大,小小取小,大小小大中間找,大大小小找不著。”證明成比例線段時(shí),可總結(jié)為“遇等積化等比,橫看豎看定相似,不想死,別生氣,等線等比來代替;遇等比化等積,想到射影與圓冪” 。
寒假初中數(shù)學(xué)學(xué)習(xí)計(jì)劃范文三
1.合理安排復(fù)習(xí)時(shí)間,“趁熱打鐵”,鞏固復(fù)習(xí),一克服不看書復(fù)習(xí)就做作業(yè),把書當(dāng)成工具書查閱的不良習(xí)慣
2.廣泛采用綜合復(fù)習(xí)方法,即通過找出知識(shí)的左右關(guān)系和縱橫之間的內(nèi)在聯(lián)系。綜合復(fù)習(xí)具體可分“三步走”:首先是統(tǒng)觀全局,瀏覽全部內(nèi)容,通過喚起回憶,初步形成完整的知識(shí)體系印象,其次是加深理解,對所學(xué)內(nèi)容進(jìn)行綜合分析,最后是整理鞏固。
3.要有自信心與意志力。數(shù)學(xué)練習(xí)常有繁雜的計(jì)算,深?yuàn)W的證明,自己應(yīng)有充足的信心,頑強(qiáng)的意志,耐心細(xì)致的習(xí)慣。
4.要養(yǎng)成先思考,后解答,再檢查的良好習(xí)慣,認(rèn)真思考,抓住關(guān)鍵,再作解答
