初中數(shù)學(xué)的學(xué)習(xí)方法
數(shù)學(xué)是一門基礎(chǔ)學(xué)科,對(duì)于廣大中學(xué)生來(lái)說(shuō),數(shù)學(xué)水平的高低,直接影響到物理、化學(xué)等學(xué)科的學(xué)習(xí)成績(jī),數(shù)學(xué)的重要地位由此可見(jiàn)。所以今天學(xué)習(xí)啦小編就與大家分享:初中數(shù)學(xué)的學(xué)習(xí)方法,希望對(duì)大家的學(xué)習(xí)有幫助!
初中數(shù)學(xué)的學(xué)習(xí)方法一
數(shù)學(xué)的解題方法是隨著對(duì)數(shù)學(xué)對(duì)象的研究的深入而發(fā)展起來(lái)的。六年級(jí)的同學(xué)們很快就要小學(xué)畢業(yè),中學(xué)的大門已經(jīng)向我們敞開(kāi)。為了能進(jìn)一步學(xué)好數(shù)學(xué),有必要掌握初中數(shù)學(xué)的特點(diǎn)尤其是解題方法。 下面介紹的解題方法,都是初中數(shù)學(xué)中最常用的,有些方法也是中學(xué)教學(xué)大綱要求掌握的。同樣這些方法也能給你們現(xiàn)在的學(xué)習(xí)有些幫助。請(qǐng)同學(xué)們把它作為資料好好保存,當(dāng)然,以后全部學(xué)會(huì)弄懂,保存大腦當(dāng)中再好不過(guò)了。
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
初中數(shù)學(xué)的學(xué)習(xí)方法二
課前課上及課后
先來(lái)說(shuō)說(shuō)大家都熟知的一些學(xué)習(xí)方法,也是一些基本的方法,這些方法確實(shí)是一些好的方法,主要就是看大家能不能真正的做好這些事情。下面讓我們來(lái)具體地看看。
課前:課前需要預(yù)習(xí),預(yù)習(xí)需要我們?nèi)グ呀酉聛?lái)要上的內(nèi)容整體上看一遍,然后找出其中的重點(diǎn)與難點(diǎn),以及自己無(wú)法很好理解的內(nèi)容,分別做上不同的標(biāo)記,以便在上課的時(shí)候針對(duì)自己的問(wèn)題去認(rèn)真聽(tīng)課與重點(diǎn)理解。
課上:在上課的時(shí)候不太可能整節(jié)課都集中精神,這時(shí)候就更顯現(xiàn)出我們課前預(yù)習(xí)的重要性了。我們需要在上課的時(shí)候集中精神聽(tīng)講預(yù)習(xí)中所遇到的重點(diǎn)與難點(diǎn),盡量地在課堂上去理解吸收。同時(shí)也可以看看老師講的重點(diǎn)與自己課前預(yù)習(xí)所確定的重點(diǎn)是否一致。另外,對(duì)于老師重點(diǎn)講解的東西需要做下相應(yīng)的筆記,以便之后復(fù)習(xí)用。
課后:課后的復(fù)習(xí)一定要及時(shí)跟上,不僅當(dāng)天要對(duì)學(xué)習(xí)的內(nèi)容進(jìn)行復(fù)習(xí),在之后的幾天里也應(yīng)該要花一定的時(shí)間去復(fù)習(xí),同時(shí)可以跟上一些練習(xí)進(jìn)行檢測(cè)與鞏固。如果復(fù)習(xí)的時(shí)候發(fā)現(xiàn)還有不明白的地方,一定要及時(shí)的去詢問(wèn)老師或是其他同學(xué),將其弄懂。
課前課上及課后三個(gè)步驟環(huán)環(huán)相扣,一定要把每一步都做到位。
提高作業(yè)效率
現(xiàn)在很多學(xué)生以及家長(zhǎng)都反應(yīng)說(shuō)作業(yè)太多,來(lái)不及或是沒(méi)有時(shí)間去完成作業(yè),導(dǎo)致學(xué)習(xí)成績(jī)不佳。但是我們應(yīng)該要想一想,我們大家的時(shí)間都是一樣多的,而大家的作業(yè)也是一樣多的,為什么有的人能夠完成,而有的人不能夠完成呢。這里就要說(shuō)到學(xué)習(xí)的效率了,有的學(xué)生能夠先復(fù)習(xí),然后再做作業(yè),做作業(yè)的時(shí)候集中注意力,能夠很快速地完成。而有的學(xué)生就與之相反了,首先可能課上就沒(méi)有聽(tīng)好,然后做作業(yè)之前也沒(méi)有進(jìn)行復(fù)習(xí),而是直接開(kāi)始做的,同時(shí)也可能是做作業(yè)的時(shí)候不夠集中注意力,即使作業(yè)不是很多,也需要花很長(zhǎng)的時(shí)間去完成。
其實(shí)這都是因?yàn)橐环N不好的學(xué)習(xí)習(xí)慣,導(dǎo)致了做作業(yè)的效率不高。那么我們應(yīng)該如何去提高做作業(yè)的效率呢?下面我給出了幾個(gè)建議,供大家參考一下。
一、要有端正的寫作業(yè)的態(tài)度。
從思想上要認(rèn)真對(duì)待,如果養(yǎng)成懶散的習(xí)慣了,以后問(wèn)題就會(huì)更多,今日不努力,明日就會(huì)失去更多,再要改善起來(lái),就更難了。因?yàn)橐粋€(gè)好習(xí)慣的養(yǎng)成是要下決心去堅(jiān)持的,雖然由于以前的習(xí)慣不好或者遺留問(wèn)題太多導(dǎo)致在堅(jiān)持的過(guò)程中會(huì)容易產(chǎn)生抵觸的情緒,甚至有時(shí)還容易放棄,但是要知道,一旦好習(xí)慣養(yǎng)成之后,原來(lái)所經(jīng)常遇到的問(wèn)題就會(huì)越來(lái)越少,成績(jī)也自然提高了起來(lái)。
二、注意力一定要集中。
不要在寫作業(yè)的時(shí)候干其他的事或想其他事,一心不能二用。盡快地反作業(yè)做完了才能夠去做別的事情。
三、要學(xué)會(huì)總結(jié)。
如果在看到題目后能很快反映出這題目所需要的知識(shí)點(diǎn),那么做題速度就會(huì)提高,在做題之后也要總結(jié)一下思路。多總結(jié)一下會(huì)發(fā)現(xiàn)很多題目都有規(guī)律可循,這樣可以起到事半功倍的效果,以后再碰到類似問(wèn)題時(shí),就可以很輕松了。
四、營(yíng)造一個(gè)良好的寫作業(yè)環(huán)境。
孩子寫作業(yè)時(shí)盡量保持安靜,書桌上除了放書、學(xué)習(xí)用品等之外,不要放其他的東西,以免分散他們的注意力。家長(zhǎng)也不要過(guò)度的嘮叨和訓(xùn)斥,要多鼓勵(lì)孩子。
加強(qiáng)計(jì)算能力
計(jì)算一直是數(shù)學(xué)的一個(gè)核心內(nèi)容,幾乎每一個(gè)數(shù)學(xué)問(wèn)題都需要通過(guò)計(jì)算。那么,計(jì)算的準(zhǔn)確率就顯得尤為重要了。想要提高數(shù)學(xué)成績(jī),計(jì)算的準(zhǔn)確率是一定要提高的。那么如何提高計(jì)算的準(zhǔn)確率呢?這里我也同樣給出了幾條建議。
一、強(qiáng)化學(xué)生的有意注意和良好的計(jì)算習(xí)慣
(1)仔細(xì)審題的習(xí)慣。拿到題目后認(rèn)真審題,看清題目的要求,想明白過(guò)程中應(yīng)該注意哪些問(wèn)題。
(2)細(xì)心檢查的習(xí)慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來(lái)的問(wèn)題驗(yàn)算。若為計(jì)算題則仔細(xì)檢查每一個(gè)步驟。
(3)認(rèn)真書寫的習(xí)慣。書寫要干凈整潔,這樣能使自己在做題時(shí)看清題目,避免錯(cuò)誤的發(fā)生。
二、強(qiáng)化口算能力
任何計(jì)算都是以口算為基礎(chǔ)的,口算能力的高低,直接影響到學(xué)生其它運(yùn)算能力的提高。要提高口算能力,首先要抓好口算的基本訓(xùn)練,所以應(yīng)當(dāng)經(jīng)常性的進(jìn)行一些口算的練習(xí)。
三、速算巧算
平時(shí)在做計(jì)算的時(shí)候要注意運(yùn)算技巧地運(yùn)用,加快運(yùn)算速度,特別是在分?jǐn)?shù)計(jì)算的部分,有時(shí)候數(shù)字比較大比較多,通分將會(huì)很困難,這時(shí)可能把分母寫成乘積的形式將是一種更好的選擇。
四、強(qiáng)化估算能力
很多的問(wèn)題,特別是應(yīng)用題,當(dāng)看到問(wèn)題后就能夠大概地去估計(jì)一下結(jié)果大概會(huì)是一個(gè)什么范圍的數(shù),有了這種估計(jì)能力之后,有時(shí)候發(fā)生計(jì)算錯(cuò)誤就能夠一下子看出來(lái)。所以在做題之前我們也可以估計(jì)一下答案的范圍,如果算得的答案不在這個(gè)范圍,那就需要我們?nèi)z查了。
五、合理利用一些數(shù)的性質(zhì)
比如說(shuō)奇數(shù)乘以偶數(shù)一定是一個(gè)偶數(shù),各位數(shù)字和是3的倍數(shù)的數(shù)一定能被3整除等等性質(zhì),都可以幫助我們對(duì)運(yùn)算是否準(zhǔn)確做一些輔助的判斷。
說(shuō)了這么多,總結(jié)起來(lái)其實(shí)也很簡(jiǎn)單,只要堅(jiān)持一個(gè)好的學(xué)習(xí)習(xí)慣,做好復(fù)結(jié)與練習(xí),那么數(shù)學(xué)學(xué)習(xí)就能夠事半功倍,學(xué)好數(shù)學(xué)自然也就不在話下。
初中數(shù)學(xué)的學(xué)習(xí)方法三
深刻理解概念。
概念是數(shù)學(xué)的基石,學(xué)習(xí)概念(包括定理、性質(zhì))不僅要知其然,還要知其所以然,許多同學(xué)只注重記概念,而忽視了對(duì)其背景的理解,這樣是學(xué)不好數(shù)學(xué)的,對(duì)于每個(gè)定義、定理,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來(lái)的,又是運(yùn)用到何處的,只有這樣,才能更好地運(yùn)用它來(lái)解決問(wèn)題。
多看一些例題。
細(xì)心的朋友會(huì)發(fā)現(xiàn),老師在講解基礎(chǔ)內(nèi)容之后,總是給我們補(bǔ)充一些課外例、習(xí)題,這是大有裨益的,我們學(xué)的概念、定理,一般較抽象,要把它們具體化,就需要把它們運(yùn)用在題目中,由于我們剛接觸到這些知識(shí),運(yùn)用起來(lái)還不夠熟練,這時(shí),例題就幫了我們大忙,我們可以在看例題的過(guò)程中,將頭腦中已有的概念具體化,使對(duì)知識(shí)的理解更深刻,更透徹,由于老師補(bǔ)充的例題十分有限,所以我們還應(yīng)自己找一些來(lái)看,看例題,還要注意以下幾點(diǎn):
不能只看皮毛,不看內(nèi)涵。我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來(lái)的意義,每看一道題目,就應(yīng)理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來(lái)也就容易了,不過(guò)要強(qiáng)調(diào)一點(diǎn),除非有十分的把握,否則不要憑借主觀臆斷,那樣會(huì)犯經(jīng)驗(yàn)主義錯(cuò)誤,走進(jìn)死胡同的。
要把想和看結(jié)合起來(lái)。我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對(duì)照解答,看自己的思路有哪點(diǎn)比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結(jié)經(jīng)驗(yàn)。各難度層次的例題都照顧到。
看例題要循序漸進(jìn),這同后面的“做練習(xí)”一樣,但看比做有一個(gè)顯著的好處:例題有現(xiàn)成的解答,思路清晰,只需我們循著它的思路走,就會(huì)得出結(jié)論,所以我們可以看一些技巧性較強(qiáng)、難度較大,自己很難解決,而又不超出所學(xué)內(nèi)容的例題,例如中等難度的競(jìng)賽試題。
多做練習(xí)。
要想學(xué)好數(shù)學(xué),必須多做練習(xí),但有的同學(xué)多做練習(xí)能學(xué)好,有的同學(xué)做了很多練習(xí)仍舊學(xué)不好,究其因,是“多做練習(xí)”是否得法的問(wèn)題,我們所說(shuō)的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過(guò)的知識(shí)攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說(shuō)的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識(shí),是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣,等等,還要真正掌握方法,切實(shí)做到以下三點(diǎn),才能使“多做練習(xí)”真正發(fā)揮它的作用。必須熟悉各種基本題型并掌握其解法。課本上的每一道練習(xí)題,都是針對(duì)一個(gè)知識(shí)點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對(duì)性也強(qiáng),應(yīng)該能夠迅速做出。許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。在解題過(guò)程中有意識(shí)地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢(shì)。數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過(guò)程中,都會(huì)反映出一定的思維方法,如果我們有意識(shí)地注重這些思維方法,時(shí)間長(zhǎng)了頭腦中便形成了對(duì)每一類題型的“通用”解法,即正確的思維定勢(shì),這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。多做綜合題。綜合題,由于用到的知識(shí)點(diǎn)較多,頗受命題人青睞。做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過(guò)做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高。“多做練習(xí)”要長(zhǎng)期堅(jiān)持,每天都要做幾道,時(shí)間長(zhǎng)了才會(huì)有明顯的效果和較大的收獲。
如何對(duì)待考試
學(xué)數(shù)學(xué)并非為了單純的考試,但考試成績(jī)基本上還是可以反映出一個(gè)人數(shù)學(xué)水平的高低、數(shù)學(xué)素質(zhì)的好壞的,要想在考試中取得好的成績(jī),以下幾個(gè)方面的素質(zhì)是必不可少的。
功夫用在平時(shí),考前不搞突擊,考試中需要掌握的內(nèi)容應(yīng)該在平時(shí)就掌握好,考試前一天晚上不搞疲勞戰(zhàn),一定要休息好,這樣,在考場(chǎng)上才能有充沛的精力,考試時(shí)還要放下包袱,驅(qū)除壓力,把注意力集中在試卷上,認(rèn)真分析,嚴(yán)密推理。
應(yīng)試需要技巧,試卷發(fā)下來(lái)后,應(yīng)先大致看一下題量,大概分配一下時(shí)間,做題時(shí)若一道題用時(shí)太多還未找到思路,可暫時(shí)放過(guò)去,將會(huì)做的做完,回頭再仔細(xì)考慮,一道題目做完之后不要急于做下一道,要再看一遍,因?yàn)檫@時(shí)腦中思路還比較清晰,檢查起來(lái)比較容易,對(duì)于有若干問(wèn)的解答題,在解答后面的問(wèn)題時(shí)可以利用前面問(wèn)題的結(jié)論,即使前面的問(wèn)題沒(méi)有解答出來(lái),只要說(shuō)清這個(gè)條件的出處(當(dāng)然是題目要求證明的),也是可以運(yùn)用的,另外,對(duì)于試題必須考慮周全,特別是填空題,有的要注明取值范圍,有的答案不只一個(gè),一定要細(xì)心,不要漏掉。
考試時(shí)要冷靜,有的同學(xué)一遇到不會(huì)的題目,腦袋立刻熱了起來(lái),結(jié)果,心里一著急,自己本來(lái)會(huì)的也做不出來(lái)了,這種心理狀態(tài)是考不出好成績(jī)的,我們?cè)诳荚嚂r(shí)不妨用一用自我安慰的心理:我不會(huì)的題目別人也不會(huì),(俗稱精神勝利法)或許可以使心情平靜,從而發(fā)揮出自己的最好水平,當(dāng)然,安慰歸安慰,對(duì)于那些一下子做不出的題目,還是要努力思考,盡量能做出多少就做多少,一定的步驟也是有分的。
