小升初數(shù)學(xué)重要知識點匯總
算術(shù)
1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2、加法結(jié)合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結(jié)合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質(zhì):a ÷ b ÷ c = a ÷(b × c)
7、除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時擴(kuò)大(或縮小)相同的倍數(shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有余數(shù)的除法: 被除數(shù)=商×除數(shù)+余數(shù)
方程、代數(shù)與等式
等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質(zhì):等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。
方程式:含有未知數(shù)的等式叫方程式。
一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學(xué)會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數(shù): 代數(shù)就是用字母代替數(shù)。
代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c
分?jǐn)?shù)
分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù)。
分?jǐn)?shù)大小的比較:同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小。異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。
分?jǐn)?shù)的加減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。
分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。
分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作為分母。
分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。
倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。
分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個整數(shù)的倒數(shù)。
分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分?jǐn)?shù)的大小
分?jǐn)?shù)的除法則:除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。
真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。
假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。
帶分?jǐn)?shù):把假分?jǐn)?shù)寫成整數(shù)和真分?jǐn)?shù)的形式,叫做帶分?jǐn)?shù)。
分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分?jǐn)?shù)的大小不變。
數(shù)量關(guān)系計算公式
單價×數(shù)量=總價 2、單產(chǎn)量×數(shù)量=總產(chǎn)量
速度×?xí)r間=路程 4、工效×?xí)r間=工作總量
加數(shù)+加數(shù)=和 一個加數(shù)=和 - 另一個加數(shù)
被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=減數(shù)+差
因數(shù)×因數(shù)=積 一個因數(shù)=積÷另一個因數(shù)
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克=1公斤= 1市斤
體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內(nèi)角和:三角形的內(nèi)角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
小升初數(shù)學(xué)重要知識點歸納
1.分?jǐn)?shù)乘法:
分?jǐn)?shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
2.分?jǐn)?shù)乘法的計算法則:
分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變;分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3.分?jǐn)?shù)乘法意義
分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分?jǐn)?shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4.分?jǐn)?shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸
5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
6.分?jǐn)?shù)的倒數(shù)
找一個分?jǐn)?shù)的倒數(shù),例如3/4 把3/4這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
7.整數(shù)的倒數(shù)
找一個整數(shù)的倒數(shù),例如12,把12化成分?jǐn)?shù),即12/1 ,再把12/1這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是1/12,12是1/12的倒數(shù)。
8.小數(shù)的倒數(shù):
普通算法:找一個小數(shù)的倒數(shù),例如0.25 ,把0.25化成分?jǐn)?shù),即1/4 ,再把1/4這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1。
9.用1計算法:也可以用1去除以這個數(shù),例如0.25 ,1/0.25等于4,所以0.25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分?jǐn)?shù)、整數(shù)也都使用這種規(guī)律。
10.分?jǐn)?shù)除法:分?jǐn)?shù)除法是分?jǐn)?shù)乘法的逆運算。
11.分?jǐn)?shù)除法計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
12.分?jǐn)?shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
13.分?jǐn)?shù)除法應(yīng)用題:先找單位1。單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。
14.比和比例:
比和比例一直是學(xué)數(shù)學(xué)容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。
所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個。
15.比的基本性質(zhì):比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。
比的性質(zhì)用于化簡比。
比表示兩個數(shù)相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。
16.比例的性質(zhì):
在比例里,兩個外項的乘積等于兩個內(nèi)項的'乘積。比例的性質(zhì)用于解比例。
17.比和比例的區(qū)別
(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b 這是比 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。 a:b=3:4 這是比例。
(2)比的基本性質(zhì)和比例的基本性質(zhì)意義不同、應(yīng)用不同。比的性質(zhì):比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積相等。比例的性質(zhì)用于解比例。聯(lián)系: 比例是由兩個相等的比組成。
18.比和比例的意義:
比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義 而另一種形式,分?jǐn)?shù)有括號的含義!(馬上點標(biāo)題下“小升初”關(guān)注可獲得更多知識干貨,每天更新呦!)
19.比和比例的聯(lián)系:
比和比例有著密切聯(lián)系。比是研究兩個量之間的關(guān)系,所以它有兩項;比例是研究相關(guān)聯(lián)的兩種量中兩組相對應(yīng)數(shù)的關(guān)系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發(fā)展,如果把比例式中右邊的比看成一個數(shù),比和比例此時又可以統(tǒng)一起來。
如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。
20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
21.圓心:圓任意兩條對稱軸的交點為圓心。
注:圓心一般符號O表示
22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一。d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
25.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
26.圓的面積公式:
圓所占平面的大小叫做圓的面積。πr^2;用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
27.周長計算公式
(1)已知直徑:C=πd
(2)已知半徑:C=2πr
(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
28.面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
29.百分?jǐn)?shù)與分?jǐn)?shù)的區(qū)別
(1)意義不同。百分?jǐn)?shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)。”它只能表示兩數(shù)之間的倍數(shù)關(guān)系,不能表示某一具體數(shù)量。因此,百分?jǐn)?shù)后面不能帶單位名稱。分?jǐn)?shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分?jǐn)?shù)還可以表示兩數(shù)之間的倍數(shù)關(guān)系.
(2)應(yīng)用范圍不同。百分?jǐn)?shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計、分析與比較。而分?jǐn)?shù)常常是在測量、計算中,得不到整數(shù)結(jié)果時使用。
(3)書寫形式不同。百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而采用百分號“%”來表示。因此,不論百分?jǐn)?shù)的分子、分母之間有多少個公約數(shù),都不約分;百分?jǐn)?shù)的分子可以是自然數(shù),也可以是小數(shù)。
而分?jǐn)?shù)的分子只能是自然數(shù),它的表示形式有:真分?jǐn)?shù)、假分?jǐn)?shù)、帶分?jǐn)?shù),計算結(jié)果不是最簡分?jǐn)?shù)的一般要通過約分化成最簡分?jǐn)?shù),是假分?jǐn)?shù)的要化成帶分?jǐn)?shù)。任何一個百分?jǐn)?shù)都可以寫成分母是100的分?jǐn)?shù),而分母是100的分?jǐn)?shù)并不都具有百分?jǐn)?shù)的意義。
(4)百分?jǐn)?shù)不能帶單位名稱;當(dāng)分?jǐn)?shù)表示具體數(shù)時可帶單位名稱。
30.百分?jǐn)?shù)應(yīng)用
百分?jǐn)?shù)一般有三種情況:
①100%以上,如:增長率、增產(chǎn)率等。
②100%以下,如:發(fā)芽率、成長率等。
③剛好100%,如:正確率,合格率等。
31.百分?jǐn)?shù)的意義
百分?jǐn)?shù)只可以表示分率,而不能表示具體量,所以不能帶單位。百分?jǐn)?shù)概念的形成應(yīng)以學(xué)生實際生活中的事例或工農(nóng)業(yè)生產(chǎn)中的事例引入。
32.日常應(yīng)用
每天在電視里的天氣預(yù)報節(jié)目中,都會報出當(dāng)天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準(zhǔn)備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風(fēng),降水概率是10%,早晚應(yīng)增加衣服。20%、10%讓人一目了然,既清楚又簡練。
知識點擴(kuò)展
1.圓的定義
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
2.圓弧和弦:
圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,半圓既不是優(yōu)弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
3.圓心角和圓周角:
頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內(nèi)心和外心:
和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。
5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
6.圓的種類:
(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。
7.圓和其他圖形的位置關(guān)系:
圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),0≤PO
關(guān)于小升初數(shù)學(xué)必考知識點
一.整數(shù)和小數(shù)
1.最小的一位數(shù)是1,最小的自然數(shù)是0
2.小數(shù)的意義:把整數(shù)1平均分成10份、100份、1000份這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾可以用小數(shù)來表示。
3.小數(shù)點左邊依次是整數(shù)部分,小數(shù)點右邊是小數(shù)部分,依次是十分位、百分位、千分位
4.小數(shù)的分類:小數(shù) 有限小數(shù) 無限循環(huán)小數(shù)無限小數(shù)無限不循環(huán)小數(shù)
5.整數(shù)和小數(shù)都是按照十進(jìn)制計數(shù)法寫出的數(shù)。
6.小數(shù)的性質(zhì):小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。
7.小數(shù)點向右移動一位、二位、三位原來的數(shù)分別擴(kuò)大10倍、100倍、1000倍
小數(shù)點向左移動一位、二位、三位原來的數(shù)分別縮小10倍、100倍、1000倍
二.數(shù)的整除
1.整除:整數(shù)a除以整數(shù)b(b0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有的倍數(shù)。
一個數(shù)約數(shù)的個數(shù)是有限的,最小的約數(shù)是1,的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質(zhì)數(shù)、合數(shù)三類。
質(zhì)數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)。質(zhì)數(shù)都有2個約數(shù)。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4
1~20以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19
1~20以內(nèi)的合數(shù)有4、6、8、9、10、12、14、15、16、18
6.能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。
能被3整除的數(shù)的特征:一個數(shù)的各位上 數(shù)的和能被3整除,這個數(shù)就能被3整除。
7.質(zhì)因數(shù):如果一個自然數(shù)的因數(shù)是質(zhì)數(shù),這個因數(shù)就叫做這個自然數(shù)的質(zhì)因數(shù)。
8.分解質(zhì)因數(shù):把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
9.公約數(shù)、公倍數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中的一個,叫做這幾個數(shù)的公約數(shù)。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
10.一般關(guān)系的兩個數(shù)的公約數(shù)、最小公倍數(shù)用短除法來求;互質(zhì)關(guān)系的兩個數(shù)公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關(guān)系的兩個數(shù)的公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。
11.互質(zhì)數(shù):公約數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù)。
12.兩數(shù)之積等于最小公倍數(shù)和公約數(shù)的積。
三.四則運算
1.一個加數(shù)=和-另一個加數(shù) 被減數(shù)=差+減數(shù) 減數(shù)=被減數(shù)-差
一個因數(shù)=積另一個因數(shù) 被除數(shù)=商除數(shù) 除數(shù)=被除數(shù)商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 乘法交換律:ab=ba
兩個數(shù)相加,交換加數(shù)的位置,它們的和不變。
兩個數(shù)相加,交換因數(shù)的位置,它們的積不變。
(2)加法結(jié)合律:(a+b)+c=a+(b+c) 乘法結(jié)合律:(ab)c=a(bc)
三個數(shù)相加,先把前兩個數(shù)相加,再同第三個數(shù)相加;或者先把后兩個數(shù)相加,再同第一個數(shù)相加,它們的和不變。
三個數(shù)相乘,先把前兩個數(shù)相乘,再同第三個數(shù)相乘;或者先把后兩個數(shù)相乘,再同第一個數(shù)相乘,它們的積不變。
(3)乘法分配律:(a+b)c=ac+bc
兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。
(4)減法的性質(zhì):a-b-c=a-(b+c) 除法的性質(zhì):abc=a(bc)
從一個數(shù)里連續(xù)減去兩個數(shù),等于從這個數(shù)里減去兩個減數(shù)的和。
一個數(shù)連續(xù)除以兩個數(shù),等于這個數(shù)除以兩個除數(shù)的積。
四.關(guān)系式
1.速度時間=路程 路程時間=速度 路程速度=時間
工作效率工作時間=工作總量 工作總量工作效率=工作時間 工作總量工作時間=工作效率
單價數(shù)量=總價 總價數(shù)量=單價 總價單價=數(shù)量
五.方程
1.方程:含有未知數(shù)的等式叫做方程。
2.方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
3.解方程:求方程解的過程叫做解方程。
六.分?jǐn)?shù)和百分?jǐn)?shù)
1.分?jǐn)?shù)的意義:把單位1平均分成若干份,表示這樣的一份或幾份的數(shù)叫做分?jǐn)?shù)。
2.分?jǐn)?shù)單位:把單位1平均分成若干份,表示其中一份的數(shù),叫做分?jǐn)?shù)單位。
3.分?jǐn)?shù)和除法的聯(lián)系:分?jǐn)?shù)的分子就是除法中的被除數(shù),分母就是除法中的除數(shù)。
分?jǐn)?shù)和小數(shù)的聯(lián)系:小數(shù)實際上就是分母是10、100、1000的分?jǐn)?shù)。
分?jǐn)?shù)和比的聯(lián)系:分?jǐn)?shù)的分子就是比的前項,分?jǐn)?shù)的分母就是比的后項。
4.分?jǐn)?shù)的分類:分?jǐn)?shù)可以分為真分?jǐn)?shù)和假分?jǐn)?shù)。
5.真分?jǐn)?shù):分子小于分母的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。
假分?jǐn)?shù):分子大于或等于分母的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或者等于1。
6.最簡分?jǐn)?shù):分子與分母互質(zhì)的'分?jǐn)?shù)叫做最簡分?jǐn)?shù)。
7.分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分?jǐn)?shù)的大小不變。
8.這樣的分?jǐn)?shù)可以化成有限小數(shù):前提是這個分?jǐn)?shù)要是最簡分?jǐn)?shù),如果分母只含有2、5這2個質(zhì)因數(shù),這樣的分?jǐn)?shù)就能化成有限小數(shù)。
9.百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或者百分比。百分?jǐn)?shù)通常用%來表示。
七.量的計量
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進(jìn)率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進(jìn)率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進(jìn)率。
質(zhì)量單位有:噸、千克、克,寫出它們之間的進(jìn)率。
時間單位有:世紀(jì)、年、月、日、時、分、秒,寫出它們之間的進(jìn)率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。
小月有:4、6、9、11月,共4個,每月30天。
二月平年是28天,閏年是29天。
左拳記月法
3.一年有4個季度,每個季度3個月。
4.平年閏年:公歷年份是4的倍數(shù)的一般是閏年,公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。
5.名數(shù):把計量得到的數(shù)和單位名稱合起來叫做名數(shù)。
單名數(shù):只帶有一個單位名稱的叫做單名數(shù)。
復(fù)名數(shù):帶有兩個或兩個以上單位名稱的叫做復(fù)名數(shù)。
6.名數(shù)的改寫:高級單位的名數(shù)化成低級單位的名數(shù)乘進(jìn)率,低級單位的名數(shù)化成高級單位的名數(shù)除以進(jìn)率。
八.幾何初步知識
1.線段、射線、直線的聯(lián)系與區(qū)別:聯(lián)系是三者都是直的,區(qū)別是線段有兩個端點,可以量出長度;射線只有一個端點,可以無限延長;直線沒有端點,兩端都可以無限延長。射線和直線是無限長的。
2.角:從一點引出兩條射線所組成的圖形叫做角。
3.角的大小:角的大小看兩條邊叉開的大小,叉開的越大,角越大。
1.計量角的大小的單位:度,用符號表示。
2.小于90的角叫做銳角;大于90而小于180的角叫做鈍角。角的兩邊在一條直線上的角叫做平角。平角180。
3.垂線:兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫做垂足。(畫圖說明)
4.平行線:在同一平面內(nèi)不相交的兩條直線叫做平行線。也可以說這兩條直線互相平行。
(畫圖說明)平行線之間垂直線段的長度都相等。
5.三角形:有三條線段圍成的圖形叫做三角形。
6.三角形的分類:
(1)按角分:銳角三角形、鈍角三角形、直角三角形。
(2)按邊分:一般三角形、等腰三角形、等邊三角形。
10.三角形三個內(nèi)角和是180。
11.四邊形:由四條線段圍成的圖形。
12.圓是一種曲線圖形。圓上任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。
13.圓的半徑、直徑都有無數(shù)條。在同一個圓里,直徑是半徑的2倍,半徑是直徑的二分之一。
14.軸對稱圖形:如果一個圖形沿著一條直線對折,直線兩惻的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
15.學(xué)過的圖形中的軸對稱圖形有:圓、等腰三角形、等邊三角形、長方形、正方形、等腰梯形
16.周長:圍成一個圖形的所有邊長的總和就是這個圖形的周長。
面積:物體的表面或圍成的平面圖形的大小,叫做它們的面積。
17。表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
體積:物體所占空間的大小叫做物體的體積。
18.長方體、正方體都有12條棱,6個面,8個頂點。
正方體是特殊的長方體,等邊三角形是特殊的等腰三角形。
19.圓柱的三個特點:(1)上下一樣粗細(xì)(2)側(cè)面是曲面(3)兩個底面是相同的圓
20.圓柱的高:圓柱兩個底面之間的距離叫做圓柱的高。圓柱的高有無數(shù)條,這些高都平行且相等。
21.把圓柱的側(cè)面展開,得到一個長方形,這個長方形的長等于圓柱的底面的周長,寬等于圓柱的高。
22.圓周率是一個無限不循環(huán)小數(shù)。=3.141592653
23.把圓等份成若干份,拼成的圖形接近于長方形。這個長方形的長相當(dāng)于圓周長的一半,寬就是圓的半徑。
24.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
25.等底等高的圓錐的體積是圓柱的,等底等高的圓柱的體積是圓錐的三倍。
體積和底面積相等的圓柱和圓錐,圓柱的高是圓錐的,圓錐的高是圓柱的3倍。
九.比和比例
1.比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。
比例的意義:表示兩個比相等的式子叫做比例。
2.求比值:比的前項除以比的后項所得的商叫做比值。
3.比的基本性質(zhì):比的前項和后項都乘或除以相同的數(shù)(0除外),比值不變。
比例的基本性質(zhì):在比例里,兩個外項的積等于兩個內(nèi)項的積。
4.應(yīng)用比的基本性質(zhì)可以化簡比;
應(yīng)用比例的基本性質(zhì)可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分?jǐn)?shù)的關(guān)系。
a:b=ab=(b0)
6.比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。
7.圖上距離:實際距離=比例尺
或=比例尺
實際距離=圖上距離比例尺 圖上距離=實際距離比例尺
8.求比值的方法:根據(jù)比值的意義,用前項除以后項,結(jié)果是一個數(shù)。
化簡比的方法:根據(jù)比的基本性質(zhì),把比的前項和后項都乘或除以相同的數(shù)(零除外),結(jié)果是一個最簡整數(shù)比。
9.正比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。
用式子表示:=k(一定),用圖表示正比例關(guān)系是一條直線。
10.反比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。
用式子表示:xy=k(一定),用圖表示反比例關(guān)系是一條曲線。
十.簡單的統(tǒng)計
1.常見的統(tǒng)計圖有條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖。
2.條形統(tǒng)計圖特點:(1)用一個單位長度表示一定的數(shù)量。(2)用直條的長短來表示數(shù)量的多少。 作用:從圖中能清楚地看出各數(shù)量的多少,便于相互比較。
折線統(tǒng)計圖的特點:(1)用一個單位長度表示一定的數(shù)量。(2)用折線的起伏來表示數(shù)量的增減變化。 作用:從圖中能清楚地看出數(shù)量的增減變化情況,也能看出數(shù)量的多少。
十一.公式的整理
平面圖形:
1.長方形:
周長=(長+寬)2 C長=(a+b)2,面積=長寬 S長=a b
2.正方形:
周長=邊長4 C正=a4,面積=邊長邊長 S正=aa
3.平行四邊形的面積=底高 S平=ah
4.三角形的面積=底高2 S三=ah2
5.梯形的面積=(上底+下底)高2 S梯=(a+b)h2
6.圓的周長=直徑3.14 C圓=d
圓的周長=半徑23.14 C圓=2r
圓的面積=半徑的平方圓周率 S圓=r2
立體圖形:
1.長方體
表面積=(長寬+長高+寬高)2 S長表=(ab+ah+bh)2,體積=長寬高 V長=abh
2.正方體
表面積=棱長棱長6 S正表=aa6,體積=棱長棱長棱長 V正=a3
3.圓柱
側(cè)面積=底面周長高,表面積=側(cè)面積+兩個底面積,體積=底面積高
4.以上立體圖形的表面積、體積可以統(tǒng)一成公式為:表面積=底面周長高+兩個底面積 體積=底面積高
5.圓錐的體積=圓柱的體積3 V錐=sh3
