數(shù)學(xué)三角函數(shù)詳細(xì)解析
主詞條:正弦函數(shù)。
格式:sin(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角對邊長度比斜邊長度的比值求出,函數(shù)值為上述比的比值,也是csc(θ)的倒數(shù)。
函數(shù)圖像:波形曲線。
值域:-1~1。
余弦函數(shù)
主詞條:余弦函數(shù)。
格式:cos(θ)。
作用:在直角三角形中,將大小為(單位為弧度)的角鄰邊長度比斜邊長度的比值求出,函數(shù)值為上述比的比值,也是sec(θ)的倒數(shù)。
函數(shù)圖像:波形曲線。
值域:-1~1。
正切函數(shù)
主詞條:正切函數(shù)。
格式:tan(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角對邊長度比鄰邊長度的比值求出,函數(shù)值為上述比的比值,也是cot(θ)的倒數(shù)。
函數(shù)圖像:右圖平面直角坐標(biāo)系反映。
值域:-∞~∞。
余切函數(shù)
主詞條:余切函數(shù)。
格式:cot(θ)。
作用:在直角三角形中,將大小為θ(單位為弧度)的角鄰邊長度比對邊長度的比值求出,函數(shù)值為上述比的比值,也是tan(θ)的倒數(shù)。
函數(shù)圖像:右圖平面直角坐標(biāo)系反映。
值域:-∞~∞。
正割函數(shù)
主詞條:正割函數(shù)。
格式:sec(θ)。
作用:在直角三角形中,將斜邊長度比大小為θ(單位為弧度)的角鄰邊長度的比值求出,函數(shù)值為上述比的比值,也是cos(θ)的倒數(shù)。
函數(shù)圖像:右圖平面直角坐標(biāo)系反映。
值域:≥1或≤-1。
余割函數(shù)
主詞條:余割函數(shù)。
格式:csc(θ)。
作用:在直角三角形中,將斜邊長度比大小為θ(單位為弧度)的角對邊長度的比值求出,函數(shù)值為上述比的比值,也是sin(θ)的倒數(shù)。
函數(shù)圖像:右圖平面直角坐標(biāo)系反映。
值域:≥1或≤-1。
萬能三角函數(shù)公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可
(4)對于任意非直角三角形,總有tanA+tanB+tanC=tanAtanBtanC
設(shè)tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當(dāng)要求一串函數(shù)式最值的時候,就可以用萬能公式,推導(dǎo)成只含有一個變量的函數(shù),最值就很好求了.
三角萬能公式有哪些
三角函數(shù)誘導(dǎo)公式有哪些
特殊角的三角函數(shù)值,一般都以正角的來記憶。
6分之π的正弦值=1/2=3分之π的余弦值=cos60°,(下略)。
4分之π的正弦值=根號2/2=4分之π的余弦值。
3分之π的正弦值=根號3/2=6分之π的余弦值。
2分之π的正弦值=1= 0的余弦值。
6分之π的正切值=根號3/3=3分之π的余切值。
4分之π的正切值=1=4分之π的余切值。
3分之π的正切值=根號3=6分之π的余切值。
大于90度(2分之π)的記法,由誘導(dǎo)公式得到的來記憶。
負(fù)數(shù)(也就是負(fù)角)的三角函數(shù)值,也由誘導(dǎo)公式得到的來記憶。
什么是三角函數(shù)
常見的三角函數(shù)包括正弦函數(shù)、余弦函數(shù)和正切函數(shù)。在航海學(xué)、測繪學(xué)、工程學(xué)等其他學(xué)科中,還會用到如余切函數(shù)、正割函數(shù)、余割函數(shù)、正矢函數(shù)、余矢函數(shù)、半正矢函數(shù)、半余矢函數(shù)等其他的三角函數(shù)。不同的三角函數(shù)之間的關(guān)系可以通過幾何直觀或者計(jì)算得出,稱為三角恒等式。
三角函數(shù)一般用于計(jì)算三角形中未知長度的邊和未知的角度,在導(dǎo)航、工程學(xué)以及物理學(xué)方面都有廣泛的用途。另外,以三角函數(shù)為模版,可以定義一類相似的函數(shù),叫做雙曲函數(shù)。常見的雙曲函數(shù)也被稱為雙曲正弦函數(shù)、雙曲余弦函數(shù)等等。三角函數(shù)(也叫做圓函數(shù))是角的函數(shù);它們在研究三角形和建模周期現(xiàn)象和許多其他應(yīng)用中是很重要的。三角函數(shù)通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現(xiàn)代的定義把它們表達(dá)為無窮級數(shù)或特定微分方程的解,允許它們擴(kuò)展到任意正數(shù)和負(fù)數(shù)值,甚至是復(fù)數(shù)值。
